3

90833

For Supervisor's use only

Level 3 CAS Calculus, 2009

90833 Demonstrate an understanding of calculus concepts when solving differentiation and integration problems

Credits: Seven 2.00 pm Thursday 26 November 2009

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

Make sure you have a copy of the Formulae and Tables Booklet L3-CALCF.

You should answer ALL the questions in this booklet.

Show ALL working for ALL questions.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–12 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

For Assessor's use only	Achievement Criteria	
Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate an understanding of calculus concepts when solving problems.	Demonstrate a deeper understanding of calculus concepts when solving problems.	Demonstrate a comprehensive understanding of calculus concepts when solving problems.
Ov	verall Level of Performance	

You are advised to spend 65 minutes answering the questions in this booklet.

QUESTION ONE

(a) A skateboard ramp can be modelled by the equation $y = \frac{1}{1+x}$ where $0 \le x \le 3$.

The skateboard ramp is supported by a tangential rail with a gradient of $\frac{-1}{4}$.

Find the equation of this support rail.

(b) Find the exact area between the curve $y = \frac{4}{5x - 2}$, the x-axis and the lines x = 2 and x = 6.

,		n be modelled	a by the equal	1011		4
$y = 1 - \sin\left(\frac{\pi}{2}\right)$	$\left(\frac{x}{2}\right)$ where $0 \le x$	$x \le 5$.				
`			3			
The maximun	n gradient the	ramp can safe	ely have is $\frac{3}{2}$.			
Will this ramp	be safe?					
Show that the	gradient of the	e function 4rv	$y^2 - 3y = 4x^2$ i	$8x-4y^2$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 i$	$8x - 4y^2 \over 8xy - 3.$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 i$	$s \frac{8x - 4y^2}{8xy - 3}.$		
Show that the	gradient of the	e function 4 <i>xy</i>	$y^2 - 3y = 4x^2 \text{ i}$	$s \frac{8x - 4y^2}{8xy - 3}.$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 \text{ i}$	$s \frac{8x - 4y^2}{8xy - 3}.$		
Show that the	gradient of th	e function 4xy	$y^2 - 3y = 4x^2 i$	$s \frac{8x - 4y^2}{8xy - 3}.$		
Show that the	gradient of th	e function 4xy	$y^2 - 3y = 4x^2 i$	$s \frac{8x - 4y^2}{8xy - 3}.$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 i$	$s \frac{8x-4y^2}{8xy-3}.$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 i$	$8x - 4y^2 \over 8xy - 3.$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 i$	$8x - 4y^2 \over 8xy - 3.$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 i$	$8 \frac{8x - 4y^2}{8xy - 3}.$		
Show that the	gradient of the	e function 4xy	$y^2 - 3y = 4x^2 i$	$8 \frac{8x - 4y^2}{8xy - 3}.$		

	The skateboard ramp modelled by the equation $y = 1 - \sin\left(\frac{\pi x}{2}\right)$ where $0 \le x \le 5$ m, s 1.5 m wide.	
ind the volume of concrete in the ramp.	t is made from solid concrete.	
	Find the volume of concrete in the ramp.	

Assessor's use only

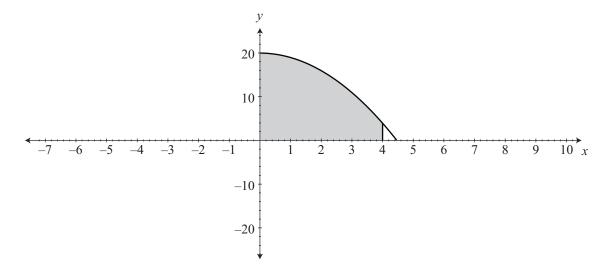
(f)

how that the sl f inflection wil	ateboard ramp has two points of inflection, and explain the effect the point have on the curvature of the ramp.

(a) The photograph below shows the Gateway Arch in St Louis. It is 192 m across at the base and 192 m in height at the centre point.

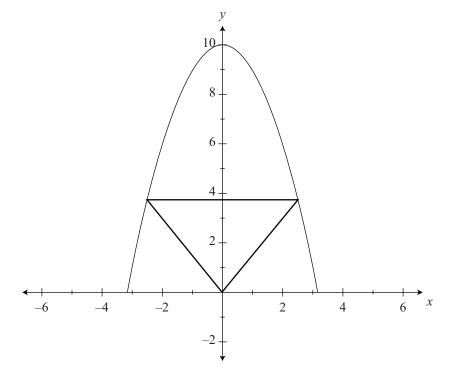
http://upload.wikimedia.org/wikipedia/commons/archive/b/b9/20080325005332!St_Louis_Gateway_Arch.jpg

The height of the arch is measured every 32 m starting from one side of the arch.


The heights are given in the table below:

x = distance (m)	0	32	64	96	128	160	192
y = height (m)	0	85	155	192	155	85	0

use Simpson's Rule, with 6 sub-intervals, to calculate an approximation for the area under the arch.


(b) The shaded region below is bounded by the curve $y = 20 - x^2$, the *x*-axis, the *y*-axis and the line x = 4.

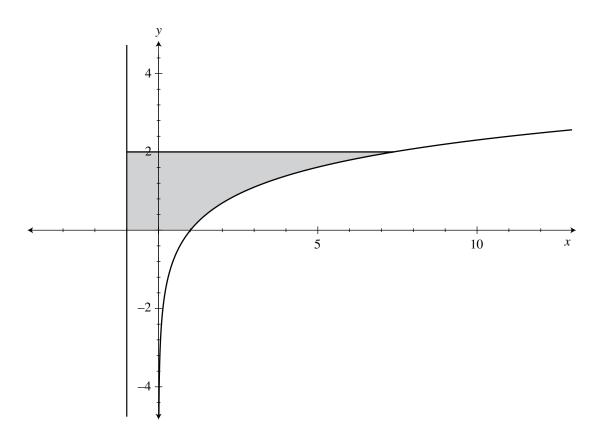
Assessor's use only

Calculate the volume of the solid generated if this region is rotated around the *x*-axis.

				-
				—
				_
dy = 5x - 3				
If $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{5x - 3}{\mathrm{e}^{2y}}$				
	he value of <i>y</i> wh	en $x = 8$.		
	he value of y wh	en $x = 8$.		
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		_
	he value of y wh	en x = 8.		_
	he value of y wh	en x = 8.		_
	he value of y wh	en x = 8.		_
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		
	he value of y wh	en x = 8.		

One vertex of the triangle is at (0,0).

The other two vertices are on the curve $y = 10 - x^2$, both vertices having the same y coordinate.


Find the maximum possible area, A, of such a triangle.

You may assume that $\frac{d^2 A}{dx^2} < 0$.

210	Calculus	00833	2000	

(f)

Assessor's use only

The shaded region above is bounded by the curve $y = \ln x$, the line x = -1, the *x*-axis and the line y = 2.

Calculate the volume of the solid generated if this region is rotated around the line x = -1.

Assessor's use only

90833

Extra paper for continuation of answers if required. Clearly number the question.

Assessor's use only

Question number	